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ABSTRACT
Purpose This manuscript describes the current statistical methodology available for active postmarket surveillance of pre-specified safety
outcomes using a prospective incident user concurrent control cohort design with existing electronic healthcare data.
Methods Motivation of the active postmarket surveillance setting is provided using the Food and Drug Administration’s Mini-Sentinel
Pilot as an example. Four sequential monitoring statistical methods are presented including the Lan–Demets error spending approach, a
matched likelihood ratio test statistic approach with the binomial MaxSPRT as a special case, the conditional sequential sampling procedure
with stratification, and a generalized estimating equation regression approach using permutation. Information on the assumptions, limita-
tions, and advantages of each approach is provided, including how each method defines sequential monitoring boundaries, what test statistic
is used, and how robust it is to settings of rare events or frequent testing.
Results A hypothetical example of how the approaches could be applied to data comparing a medical product of interest, drug A, to a con-
current control drug, drug B, is presented including providing the type of information one would have available for monitoring such drugs.
Summary We have described the current state of methodology for postmarket surveillance of pre-specified safety outcomes. We describe
the limitations and advantages of the approaches while acknowledging areas for future development.
Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

There is a pressing public health need to monitor the
safety of marketed medical products. Therapeutic and
prevention products, such as vaccines, drugs, and
devices, go through rigorous clinical trials evaluating
efficacy and safety before being approved, but these
trials are generally not of sufficient size to systemati-
cally detect rare adverse events and do not always

include representation from all populations that re-
ceive them after their marketing. Therefore, the
Centers for Disease Control and the Food and Drug
Administration (FDA) have begun to utilize large
multi-site healthcare databases to conduct postmarket
surveillance evaluations for medical product safety.
The FDA’s Sentinel Initiative is an example of a
program designed to improve the evaluation of safety
across a large array of FDA-regulated medical
products.1

This paper describes statistical methods for the
evaluation of recently approved products using a pro-
spective cohort observational design with existing
electronic healthcare data for pre-specified safety
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outcomes. The goal of this study design is to quickly
detect potential safety concerns by sequentially moni-
toring effect estimates multiple times throughout an
evaluation. The aim is to determine whether, for a pre-
specified set of safety outcomes, there is an excess rate
of observed events in recipients of the medical product
of interest (MPI) compared with a single comparison
group. The comparison group is important and can
be chosen in several ways. In this manuscript, we
consider a concurrent control group defined to be com-
parable to those taking the MPI after controlling for
confounders. For example, when evaluating a new
diabetes drug for safety, an appropriate comparison
group could be those taking an alternative diabetes
drug. However, we would need to control for site,
and perhaps patient characteristics, because physicians
from the various sites contributing data may exhibit
differential prescribing habits, and patient characteris-
tics may be associated with choice of diabetes drug.
This type of safety evaluation has been coined

“signal refinement” because potential adverse events
are predefined based upon the suggestion of a poten-
tial risk, which may result from various scenarios
including, but not limited to, observation during pre-
approval or in adverse event reporting systems,2 or
because of known biologic reasons uncovered during
the study of similar medical products. This signal
refinement stage can be thought of as a preliminary
step before conducting a more extensive phase IV
observational study or confirmatory randomized clin-
ical trial because existing healthcare databases, typi-
cally constructed for payment or clinical care purposes,
tend to have issues such as incomplete data, data errors,
and lack of information on potential confounders.
There have been several examples of signal refinement
studies published, but this is still a relatively new
area.3–7

Statistical methods used to address hypotheses
within postmarket safety evaluation designs must be
able to detect both rare and common adverse events,
control for confounding, and maintain the overall type
I error across multiple tests. This manuscript describes
the current state of statistical methods developed to
conduct sequential analysis of prospective cohort data
for medical product safety. We present four sequential
methods that use different approaches to handle con-
founding, maintain the overall type I error, and have
different statistical properties such as time to signal
detection and power. Controlling for confounding is
a major concern for observational safety surveillance
and distinguishes it from the randomized clinical
trial setting in which most sequential monitoring
methods have been developed. Furthermore, when

the outcomes of interest are rare, the inferential proper-
ties that hold in randomized trials, such as large
sample asymptotics, may not hold in this setting and
need to be assessed. We focus on methods already
applied to observational safety surveillance evalua-
tions and studies but, for comparison, also introduce
one general method used in randomized clinical
trials that is applicable to safety surveillance. We dis-
cuss potential limitations of these methods and
conclude with discussion of the need for future work
to develop methods tailored to the setting that we
characterize.

METHODS

The electronic data generally captured for signal refine-
ment by systems like Mini-Sentinel are primarily
administrative and claims based, collected by health
plans during the course of routine healthcare practice.
Mini-Sentinel uses a distributed data system, in which
individual level data, standardized using a common
data model, remain at the local site. For this paper,
we will assume that distributed programs summarize
event and sample size counts at each site, stratified by
exposure group and by confounders, and these results
are then aggregated across sites for analysis. Although
in some cases, analyses may be based on individual
level data, more often to protect patient privacy, de-
identified information is combined for central analysis,
and thus, the focus of this discussion remains on
aggregate data.

Data specifications and notation

We assume that accruing data will be analyzed at
specific time points (t= 1,. . .,T). We also assume that
each individual i is either exposed to the MPI, Di=1,
or not exposed, Di= 0, and either has the outcome of
interest occurring before the end of analysis t, Yi(t) = 1,
or does not Yi(t) = 0. The exposure time, Ei(t), denotes
the cumulative exposure time prior to analysis t. It could
be a single time exposure window (e.g., vaccine: Ei(t)=1
for all individuals) or a chronic exposure (time on
either MPI or comparator), for which assumptions of
the exposure time and outcome relationship must be
made (constant risk or change in risk because of ex-
posure duration). For this manuscript, we censor a
participant’s exposure time at the date of disenroll-
ment, occurrence of the outcome, or discontinuation
of use of the initial prescribed treatment. In the case
of discontinuation, we add a certain lag time to allow
recognition of outcomes that could biologically be re-
lated to the exposure (e.g., 7 days after discontinuation
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of treatment for the outcome of seizure because out-
comes more than 7 days after discontinuation are
unlikely to be related to treatment). Furthermore,
participants are censored if they switch exposure
groups and begin taking the other medical product
(i.e., an exposed individual starts taking the compar-
ator medical product). A lag time also may be added
after the date of switching exposures. These design
features are consistent with the incident user cohort
study design currently in common use in postmarket
surveillance8.
Furthermore, we assume that there is a set of base-

line confounders, Zi, associated with individual i,
which can be composed of variables such as age,
sex, site, and health conditions. When using aggregate
data, these confounders often are categorized to form a
set of categorical confounders, Zc

i . For example, a
continuous confounder, such as age, can be catego-
rized into 5- or 10-year age groups. Under this data
setup, confounding can be addressed by regression,
stratification, or matching.

Sequential testing framework

In a signal refinement evaluation, the overall hypothe-
sis of interest is whether there is a higher event rate for
those on the MPI (Di= 1) compared with the unex-
posed group (Di = 0) after accounting for confounding
and exposure time. Numerous test statistics (based on
the relative risk (RR) or hazard ratio, for example)
can be derived to evaluate this hypothesis, thus creat-
ing different statistical methods. The chosen hypothe-
sis is tested at each analysis t, and if the test statistic
at analysis t exceeds a pre-defined critical boundary,
c(t), it signals a significantly elevated rate of events
at analysis t; otherwise, the study continues to the next
analysis time until the pre-defined end of the evalua-
tion. At each analysis, more new information accumu-
lates, which may include new participants exposed and
unexposed to the MPI since the last analysis, as well as
more follow-up or exposure time for participants
already included in the previous analysis. Different
approaches to incorporating updated data induce
different assumptions that need to be accounted for
in the calculation of the critical boundary. The critical
boundary can be chosen in numerous ways, but it must
maintain the overall type I error rate across all analy-
ses, taking into account both multiple testing and a
skewed testing distribution that conditions on whether
earlier test statistics exceeded the specified critical
value at previous analysis times. A general review of
sequential monitoring boundaries has been presented
by Emerson et al.9 and is beyond the scope of this

paper, but we will present approaches specific to the
observational surveillance setting and one general
method used in randomized clinical trials that is appli-
cable to this area.

Group sequential statistical methods

Lan–Demets group sequential approach using error
spending. The first method we consider is a general
group sequential method used mainly in randomized
clinical trials developed by Lan and Demets10 using an
error spending approach. An error spending approach
uses the concept of cumulative alpha or type I error,
a(t), defined as the cumulative amount of type I error
spent at analysis t and all previous analyses, 1,. . .,t-1.
We assume that 0< a(1)≤ ∙∙∙≤ a(T) = a, where a is
the overall type I error to be spent across the evaluation
period. The function a(t) can be any increasing
monotonic function that preserves family-wise error,
but there are several common approaches including
the Pocock11 boundary function a(t) = log(1+ (exp(1)-1)
t/T) a, O’Brien-Fleming12 boundary function a(t) =

2 1�Φ Z1�a=2= ffiffiffiffiffi
t=T

p� �� �
, and the general power bound-

ary function a(t) = (t/T)pa for p> 0. The most commonly
used boundary function for safety evaluations has been a
flat, Pocock-like, boundary on a standardized test
statistic scale. This boundary spends a approximately
evenly across analyses, given the test statistic is asymp-
totically normally distributed. Therefore, it spends more
a at earlier analyses relative to later analyses, given
the amount of statistical information, or sample size,
observed up to time t compared with an O’Brien Fleming
boundary, which is commonly used in efficacy studies.
This flat boundary has been discussed as Pocock like,
but a Pocock boundary when testing more frequently
(quarterly or more often) is not completely flat. For
further discussion of boundary shapes and statistical
trade-offs between them in practice for postmarket
surveillance, see Nelson et al.13

Given the error spending boundary function, Lan
and Demets developed an asymptotic conditional
sequential monitoring boundary for any asymptoti-
cally normal test statistic based on independent incre-
ments of data.10 This boundary can be computed and
used to compare with almost any standardized test
statistic, including one that controls for confounding.
For example, when interest is in an adjusted RR, R̂ tð Þ,
or log RR, it can be estimated using Poisson regres-
sion, and a standardized test statistic can be calculated,

Zval tð Þ ¼ R̂ tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ^

R tð Þ� �q
. The value of Zval(t) can

then be compared with the asymptotic conditional
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monitoring boundary developed by Lan and Demets,10

resulting in a decision to stop if Zval(t) exceeds the
monitoring boundary or to continue collecting addi-
tional data. This is an appealing approach because the
boundary is very simple to calculate and relies on a
well-defined asymptotic distribution. However, in prac-
tice with rare events and frequent testing (small amount
of new information between analyses), the asymptotic
properties of the boundary fail to hold. This is similar
to the scenario where an exact test may be preferred to
an asymptotically normal test when the sample size is
small. The following methods have sought to address
the shortcomings of this approach to allow for more pre-
cise statistical performance in a wider variety of settings.

Group sequential likelihood ratio test. The group
sequential likelihood ratio test (LRT) approach is a
method that has been used in the Vaccine Safety Data
Link project to monitor vaccine safety for a single time
vaccine exposure.3,6,7,14 The approach uses exposure
matching with a fixed matching ratio (1:M) to control
for confounding and then computes a LRT statistic.
The most commonly used method is the Binomial
maxSPRT,14 which assumes continuous monitoring
(i.e., after each matched set of exposed and unexposed

individuals come into the dataset, the test statistic is
compared with the monitoring boundary).
Specifically, for the maxSPRT method, one creates

matched exposure strata, s (s= 1,. . .,S), such that each
exposed individual, with Ds1= 1, is matched to one or
more unexposed individuals (Ds2 = 0,. . .,DS(M+1) = 0)
who have the same categorical confounders, Zc

i . Then,
the log LRT statistic at each analysis, t, is the
following:

LLR1 tð Þ ¼ log

YD¼1 tð Þ
Y tð Þ

� �YD¼1 tð Þ
YD¼0 tð Þ
Y tð Þ

� �YD¼0 tð Þ

1
Mþ1

� �YD¼1 tð Þ
M

Mþ1

� �YD¼0 tð Þ

0
B@

1
CA;

where YD¼1 tð Þ ¼ PS tð Þ

s¼1

PMþ1

j¼1
YsjDsj and YD¼0 tð Þ ¼

PS tð Þ

s¼1

PMþ1

j¼1
Ysj 1� Dsj

� �
are the number of events observed

among those exposed and unexposed to the MPI up to
time t, respectively, and Y(t) =YD= 1(t) + YD= 0(t) is the
total number of events up to time t. Note that S(t) is the
number of strata up to time t, which also is the number
of exposed participants because we are assuming a
fixed matching ratio of 1:M. This particular LRT,
which conditions on the total number of events, Y(t),
is designed for the rare event case in which only one
event is expected to be observed per exposure stratum.
One can think of this LRT as comparing the observed
proportion of exposed (and unexposed) events out of
the total number of events to the expected proportion
under the null, which is just 1/(M+ 1) for the exposed
participants and M/(M+ 1) for the unexposed
participants.
However, when events are not extremely rare, or

when the probability within a stratum of more than
one event occurring is not small, the assumptions of
this LRT are violated, and a more general two-sample
binomial likelihood ratio test statistic should be used:

where ND¼1 tð Þ ¼ PS tð Þ
s¼1

PMþ1
j¼1 Dsj ¼ S tð Þ and

ND¼0 tð Þ ¼ PS tð Þ
s¼1

PMþ1
j¼1 1� Dsj

� � ¼ M � S tð Þ are the

number of people exposed and unexposed to the
medical product up to time t, respectively, and N(t) =
ND=1(t) +ND= 0(t) is the total sample size up to time t.
Note that this general LRT incorporates the total sample
size, unlike the binomial maxSPRT LRT that is condi-
tional on the total number of events. For rare events,
the performance of each LRT is similar. Further evalua-
tion needs to be conducted to establish the scenarios in
which each LRT has better statistical properties.
For the binomial maxSPRT, a Pocock-like boundary

has been proposed, c(t) = a, which is a flat boundary on
the log LRT statistic. One common way to solve for

LLR2 tð Þ ¼ log

YD¼1 tð Þ
ND¼1 tð Þ

� �YD¼1 tð Þ
1� YD¼1 tð Þ

ND¼1 tð Þ
� �ND¼1 tð Þ�YD¼1 tð Þ

YD¼0 tð Þ
ND¼0 tð Þ

� �YD¼0 tð Þ
1� YD¼0 tð Þ

ND¼0 tð Þ
� �ND¼0 tð Þ�YD¼0 tð Þ

Y tð Þ
N tð Þ

� �Y tð Þ
1� Y tð Þ

N tð Þ
� �N tð Þ�Y tð Þ

0
B@

1
CA;
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the constant, a, uses an iterative simulation approach
similar to the following:

Step 1: Simulate data assuming Ho and the observed
event rate while controlling for confounding (i.e.,
using a permutation approach: fix Ys1,. . .,YsM
(s = 1,. . .,S), and permute Ds1,. . .,DsM to create
Ds1*,. . .,DsM* so that you hold the exposure strata
relationships and thus control for confounding).
Step 2: Calculate LLR(t) on the simulated dataset.
Step 3: If LLR(t)≥ a then Signalk = 1 and stop
loop; otherwise, continue to next t + 1.
Step 4: If t=T, then Signalk = 0.

This process is repeated a large number, Nsim, times,
and the estimated a level for the boundary is calculated
as â ¼ PNsim

k¼1 Signalk=Nsim. One solves for a by repeat-
ing the simulation and changing a until â ¼ a.
This approach is a special case of the general unifying

boundary approach developed by Kittleson et al.15 To
allow for the more general approach, define c(t) = au(t)
where u(t) is a function dependent upon the proportion
of statistical information (e.g., sample size) up to time
t and is of the form u(t)= (N(T)/N(t))1-2Δ where Δ> 0
is a fixed parameter depending upon the design (e.g.,
u(t)= 1 is Pocock, and u(t)= (N(T)/N(t))0.5 is O’Brien
and Fleming). The same approach is used to solve itera-
tively for a, but the boundary c(t) will now be shaped
differently depending upon u(t). We have named this
more flexible version of the binomial maxSPRT as the
group sequential LRT (GS LRT). This additional flexi-
bility allows the method to be applied more generally,
for example, within the Mini-Sentinel pilot, where data
are not available as often (potentially quarterly). Further-
more, the shape of boundary can be changed to reflect
the desired trade-offs appropriate to the specific safety
question of interest. Because the original binomial
maxSPRT used a unifying boundary type approach, we
have presented it as such here, but as has been shown
by others16, the error spending approach and unifying
approach are complementary, and therefore, we could
have chosen an error spending approach.
A potential limitation of the GS LRT method is the

fixed matching ratio. In practice, if there is a need to
implement a strict matching criterion, because of the
need for strong confounding control, then it can be diffi-
cult to find M unexposed matches for each exposed
participant especially in the scenario of frequent moni-
toring. Frequent monitoring typically implies that an
exposed participant should be matched toM unexposed
participants within the current analysis time frame. This
can lead to loss of matched strata including strata with
events. When strata are lost, the results are then only

generalizable to the subpopulation of the exposed
population for which a matching control was found.
Often, the matching criterion is then loosened, leading
to less confounding control but a larger matched cohort.

Conditional sequential sampling procedure. The con-
ditional sequential sampling procedure (CSSP)17 was
specifically developed to handle chronically used
exposures, such as drugs that are taken over a period.
However, the approach also is able to accommodate
a single time exposure such as a vaccine. This method
handles confounding using stratification and assumes
that the data are aggregated.
Specifically, using categorical confounders, Zc

i , one
stratifies the entire population under evaluation (unlike
GS LRT, which uses a matched sample). Then, at
each analysis, t, within each confounder stratum, ZS

k
(k=1,. . .,K), one calculates the exposure time, ED,k(t),
and number of events, YD,k(t) among all participants in
stratum k on medical product D (D=0 (unexposed) or
D=1 (exposed)) since the previous analysis t-1, where
ED;k tð Þ ¼ PN

i¼1 Ei tð Þ � Ei t � 1ð Þð ÞI Zc
i ¼ ZS

k andDi ¼ D
� �

and YD;k tð Þ ¼ PN
i¼1 Yi tð Þ � Yi t � 1ð Þð ÞI Zc

i ¼ ZS
k andDi ¼ D

� �
:

Under Ho, no relationship between exposure to the
MPI and the outcome conditional on strata, the condi-
tional distribution of YD = 1, k(t)|YD = 1, k(t) + YD = 0, k(t)

is Binomial YD¼1;k tð Þ þ YD¼0;k tð Þ; ED¼1;k tð Þ
ED¼1;k tð ÞþED¼0;k tð Þ

� �
,

which is based on the proportion of exposure time
observed for those exposed compared with the total
exposure time including exposed and unexposed.
Using this stratum-specific conditional distribution,
one can simulate the distribution of YD = 1, k(t), the
number of outcomes among those on the MPI within
each stratum under Ho, given YD = 1, k(t) + YD = 0, k(t).
The test statistic of interest is then the total number of

adverse events observed among those exposed up to time
t across all strata, YD¼1 tð Þ ¼ PK

k¼1YD¼1;k tð Þ. The CSSP
approach uses an error spending approach in combina-
tion with the conditional stratum-specific distributions
to create the sequential monitoring boundary. Specifi-
cally, it uses the following iterative simulation approach:

Step 1: Create a single realization of the following
dataset of observed exposed counts under Ho for
analysis t, t= 1,..,T as follows:

a) For all confounder strata k, simulate ~YD¼1;k tð Þe
Binomial Yk tð Þ; ED¼1;k tð Þ

ED¼1;k tð ÞþED¼0;k tð Þ
� �

if ~Yk tð Þ > 0 else

set ~YD¼1;k tð Þ ¼ 0:

b) Calculate ~YD¼1 tð Þ ¼ Pt
j¼1

PK
k¼1

~YD¼1;k jð Þ (total num-
ber of simulated exposed events at analysis t)

a. j. cook et al.76
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Step 2: Repeat Step 1 for a large number of real-
izations, Nsim, to create a distribution of total
number of exposed events at each analysis,
~Y
1
D¼1 tð Þ; . . . ; ~YNsim

D¼1 tð Þ.
Step 3: Order ~Y

1
D¼1 1ð Þ; . . . ; ~YNsim

D¼1 1ð Þ from smallest

to largest and if YD¼1 1ð Þ > ~Y
Nsim� 1�a 1ð Þð Þð Þ
D¼1 1ð Þ then

signal at analysis t else continue.
Step 4: Set the simulated event counts that
would have signaled at this analysis,
~Y

Nsim 1�a t�1ð Þð Þþ1ð Þ
D¼1 t � 1ð Þ; . . . ; ~Y Nsimð Þ

D¼1 t � 1ð Þ , to an
extreme value, such as 1000, so that these realiza-
tions will be indicated as having past the bound-
ary. This allows for a cumulative error spending
calculation that incorporates stopping. Otherwise,
keep ~Y

j
D¼1 tð Þfrom Step 1 and repeat from 1 at next

analysis, t+ 1.

Using this simulation approach explicitly incorpo-
rates the sequential monitoring stopping rules. Any
form of the cumulative error spending function, a(t),
can be assumed as discussed in the section on the
Lan–Demets Group Sequential approach using error
spending.
This CSSP approach is especially good when evalu-

ating rare events, but it has limitations when there are
too many strata and/or short intervals between analy-
ses. The reason this approach breaks down is because
the only informative strata are those that meet the
following two criteria: (i) at least one observed event
but not all participants observe an event; and (ii) both
an exposed and unexposed participant. Furthermore,
each analysis is treated as having separate strata
because information from one analysis to the next is
being treated as independent. Therefore, the true
number of independent strata isK� T(number of con-
founder strata times total number of analyses) across
all analyses. So as both K and T increase, very few
strata will be informative. As a result, the test statistic
is less stable, which can both influence power and
potentially inflate or deflate the type I error. Having a
small number of informative strata also leads to results
being generalizable to the informative strata popula-
tion only and not to the overall population. Caution
should be taken in the interpretation of the results in
this high dimensional strata situation. Furthermore,
this approach assumes a constant relationship between
exposure duration and the probability of an event,
which may not be valid. Overall, it has nice properties
for the rare event case and will be applicable to post-
market surveillance in settings where testing is not
performed highly frequently or when too many con-
founder strata are required.

Group sequential estimating equation approach. The
final approach we will present is an approach that con-
trols for confounding through regression (unweighted
or weighted). It can be applied to either the single
exposure time or chronic exposure time settings. It
has the flexibility to incorporate different exposure
duration relationships, but we will focus on a constant
relationship (i.e., given exposure duration, one assumes
a constant rate of disease based just on exposure time).
The approach uses a generalized estimating equation
(GEE) framework and a score test statistic. Specifically,
assume that the mean regression model under the null
hypothesis, Ho, of no relationship between the MPI
and the event isg(E(Yi(t))) =b0 +bZZi+ fθ(Ei(t)), where
g(.) is the mean link function; for example, the logit
for a logistic model or the logarithm for a Poisson
model. The exposure link function,fθ(.), would typically
be ignored for a single time exposure or specified as the
logarithmic function if using a Poisson model. How-
ever, to allow for flexibility, this has been kept general.
Given the mean model, the generalized score statis-

tic,18 Sc(t), can be calculated, with the additional spec-
ification for the family from which the data have
arisen; for example, a binomial family for logistic
regression and a Poisson family for a log regression
model. However, a nice property of GEE when using
the generalized score statistic is that it only assumes
that the mean model is correctly specified.19

To calculate the sequential monitoring boundary, it
has been proposed to use the following permutation
data distribution:

Step 1: At each analysis t, simulate data by fixing
(YN(t-1)+1, ZN(t-1)+1),. . .,(YN(t), ZN(t)) and permuting
DN(t-1)+1,. . .,DN(t) to create D*

N(t-1)+1,. . .,D
*
N(t) and

calculate ~Scj tð Þ.
Step 2: Repeat Step 1 for a large number of realiza-
tions, Nsim, to create a distribution of score statistics,
under Ho, at each analysis t, ~Sc1 tð Þ; . . . ; ~ScNsim tð Þ.

The boundary can be defined following the unifying
boundary formulation as outlined for the GS LRT
method or an error spending approach as outlined for
GS LD method, except with this permuted dataset
and score test statistic. Note that we are not directly
estimating the effect ofDi because a score statistic is cal-
culated under Ho. This allows for the test statistic to have
better statistical properties, such as power, when the
interest is in comparing alternative hypotheses that are
closer to the null (e.g., better power relative to other
methods for detecting RR=1.5 versus RR=3.0)20.
The potential advantages of this approach compared

with the other three approaches is that it may provide
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more flexible confounder control compared with GS
LRT or CSSP, and it does not rely as heavily on the
asymptotic assumptions as needed for the Lan–Demets
error spending approach. However, a limitation to this
approach, and any regression approach, is that it
requires the first analysis to have enough events and
observations to estimate the parameters of the mean
regression model. This can be difficult for the ex-
tremely rare event case where the GS LRT or CSSP
approaches may be preferable. As outlined by Nelson
et al.,13 it may be advantageous in safety surveillance
to delay the first test of the data until an adequate
amount of information has accrued, in which case, this
method may be applicable in most commonly encoun-
tered situations. Furthermore, it requires more compu-
tational time than the well-defined asymptotically
normal Lan–Demets error spending approach, so under
the non-rare event case, the latter approach may be
preferable for simplicity. Overall, all four approaches
are applicable to the postmarket surveillance setting,
and a brief summary of assumptions, limitations, and
advantages is outlined in Table 1.

RESULTS

In this section, we present a hypothetical sequential
monitoring application where the question of interest
is as follows: Does the new drug A (the MPI) have a
higher rate of myocardial infarction (MI) compared
with drug B. The data are from five sites, and the con-
founders are age, sex, and body mass index (BMI).
For deidentification, age is categorized into 5-year

categories and BMI into four categories: low (BMI
18.5 kg/m2), normal (18.5 kg/m2≤BMI< 25 kg/m2),
overweight (25 kg/m2≤BMI< 30 kg/m2), and obese
(30 kg/m2≤BMI).
The surveillance evaluation is designed to sequen-

tially monitor up to a total sample size of 10 000
participants assuming a flat, Pocock-style, boundary
with the first analysis following accrual of 2500
participants and then analyses approximately every
417 participants (19 analyses) (Figure 1). This sce-
nario is akin to a 2-year evaluation with constant
accrual of 10 000 participants where the first analysis
occurs after 180 days, and each subsequent analysis
occurs monthly thereafter. For simplicity, the uptake
of each drug is equal, and the expected percent with
the event, MI, after 2 years is 5% overall. Table 2
shows an example of such a dataset.
We now apply three of the four methods discussed

previously. We will not apply the GS LRT method
because it is not applicable outside a single-time
exposure setting. For the GS LD and GS EE methods,
one uses the stratum-specific cumulative event data,
Ycum,s=

Pt
j¼1Yj;S , and exposure time data, Expcum,s =Pt

j¼1Expj;S , at each analysis (Table 2: Columns
8 and 10) and fits a Poisson regression model adjusting
for age, sex, and BMI categories with log(Expcum,s) as
an offset term. The GS LD method then calculates the
standardized Wald statistic based on the adjusted RR
and compares this with the normal approximation
boundary developed by Lan–Demets. The GS EE
method calculates the generalized score test statistic
and compares this with the permutation-derived criti-
cal boundary. The CSSP approach uses the total

Table 1. Overview of the four statistical methods sequential monitoring including potential advantages and limitations

Exposure
setting

Confounding
control

Test statistic Sequential boundary
formulation

Potential
advantages

Potential limitations

GS
LD

Single
time or
chronic
exposure

All:
Matching,
stratification,
regression

Any
standardized
test statistic

Error spending boundary
derived using a normal
approximation

Easy to apply,
flexible
confounding
control

In very rare event setting, or frequent testing,
the normal approximation assumptions may not
hold

GS
LRT

Single
time
exposure

Matching
with fixed
matching
ratio

LRT Unifying boundary derived
using permutation; potential
to extend to error spending
boundary

Matching
provides an
appealing
interpretation

Information loss because of restricted sample;
potential loss of exposed if matching criteria
too strict or insufficient confounding control if
criteria too loose

CSSP Single
time or
chronic
exposure

Stratification Number of
events for
those on MPI

Error spending boundary
derived by conditioning on
number of events within
strata

Works well for
rare adverse
events

May not maintain type I error when strata are
small or if testing is frequent

GS
EE

Single
time or
chronic
exposure

Regression Score
statistic

Unifying boundary or error
spending boundary derived
using permutation

Flexible
confounding
control with
few
assumptions

Requires sufficient outcome data at first look to
estimate the initial regression parameters
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number of events for those on drug A, YCum;D¼A tð Þ ¼PS tð Þ
s¼1Ycum;s tð ÞI Di ¼ Að Þ, as the test statistic, where S

(t) is the total number of strata at analysis t, and calcu-
lates an analysis-specific p-value (i.e., the probability
of observing this test statistic, or one more extreme,
based on the simulated distribution under the null)
and compares this p-value with a Pocock error spend-
ing boundary. Figure 1 shows the different boundary
shapes for the three methods.

Given these boundaries, Tables 3 and 4 provide an
example of the type of monitoring summary one
would create for a sequential monitoring evaluation.
For this fictitious data example, the actual RR was 2,
and all three methods signaled at the second analysis,
but results often vary in other data settings. In this
case, all methods performed equally well, and there
was an indication of an elevated rate of MI for those
on drug A compared with drug B even after control-
ling for confounding.

Figure 1. Sequential Monitoring boundaries for a flat, Pocock-style, boundary with a sample size of 10,000 participants with the first look after the first
2,500 participants and then approximately every 417 participants (19 looks) using a) GS LD and GS EE boundaries based on a standardized test statistic
and b) CSSP boundary based on the error spending approach

Table 2. The structure of the aggregated data available for analysis in data systems like the Sentinel System

Look Stratum Site Age Sex BMI Drug Ycum,s
1 Yt,s

2 Expcum,s
3 Expt,s

4

1 1 1 40–45 Male Normal A 2 2 250 250
1 1 1 40–45 Male Normal B 2 2 280 285
1 200 5 70–75 Female Obese A 11 11 720 720
1 200 5 70–75 Female Obese B 16 16 750 750
2 1 1 40–45 Male Normal A 2 0 320 70
2 1 1 40–45 Male Normal B 4 2 330 50
2 200 5 70–75 Female Obese A 13 2 780 60
2 200 5 70–75 Female Obese B 17 1 800 50

1Ycum,s is the total cumulative events observed at and before look t within each stratum s.
2Yt,s is the events observed only at look t within each stratum s.
3Expcum,s is the total cumulative exposure time observed at and before look t within each stratum s.
4Expt,s is the exposure time observed only at look t within each stratum s.
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SUMMARY

We have presented four different group sequential
monitoring approaches that are applicable to active
postmarket surveillance of administrative and claims
observational data. The theoretical underpinnings of
each method have been described and illustrated using
a hypothetical application. A formal evaluation of these
four approaches still needs to be conducted to assess
important statistical properties, such as delineation of
scenarios in which a given method is appropriate (i.e.,
maintains the overall type I error and controls for con-
founding) or outperforms other methods. Performance

often is quantified as having higher probability of
signaling when a signal exists (power) or how quickly
a method detects a signal (time to detection), which are
clearly important quantities in safety surveillance.
There are still other methodological issues that need

to be addressed. Open questions include developing
better approaches to handle distributed data sources with
more nuanced confounding control, extensions to the
survival context for rare adverse events, and controlling
for provider or facility effects. Therefore, the statistical
methods presented represent a first step toward a general
methodology appropriate for the signal refinement
surveillance setting.

Table 3. 3aExamples of monitoring data for the GS LD and GS EE methods when comparing observed test statistics with a standardized test statistic
sequential boundary based on outcomes with prevalence 0.05 over the 2-year evaluation and confounding when the actual adjusted relative risk is 2

Look Time (months) Ycum
1 Ycum,D=A

2 Expcum
3

(person-days)
Expcum,D=A

4

(person-days)
RRAtoB

5 TestStat6 Test statistic
boundary7

Signal

GS LD
1 6 73 53 193 373 96 634 1.76 2.09 2.10 No
2 7 97 75 252 559 125 366 2.38 3.48 2.31 Yes
3 8 116 88 314 716 155 774 2.12
4 9 143 107 379 954 187 629 2.09
19 24 514 379 1 454 836 703 747 2.06
GS EE
1 6 73 53 193 373 96 634 1.76 2.16 2.28 No
2 7 97 75 252 559 125 366 2.38 3.65 2.28 Yes
3 8 116 88 314 716 155 774 2.12
4 9 143 107 379 954 187 629 2.09
19 24 514 379 1 454 836 703 747 2.06

1Ycum is the total cumulative events observed at and before look t.
2Ycum,D=A is the total cumulative events observed at or before look t for those on drug A.
3Expcum is the total cumulative exposure time observed at and before look t.
4Expcum,D=A is the total cumulative exposure time observed at and before look t for those on drug A.
5RRAtoB is the adjusted relative risk (RR) comparing drug A to drug B at each look adjusting for site, age, sex, and BMI category.
6TestStat is the observed test statistic calculated at each look and is the Wald-based test for GS LD and score-based test for GS EE.
7Test Statistic Boundary is the critical boundary in which the test statistic is compared to indicate if a given look has signaled.

Table 4. 3bExample of monitoring data for the conditional sequential sampling procedure method when comparing the estimated probability of observing
number of observed outcomes in Drug group A with an error spending sequential monitoring boundary based on outcomes with prevalence of 0.05 over
the 2-year evaluation and confounding

Look Time (months) Ycum
1 Ycum,D=A

2 Expcum
3

(person-days)
Expcum,D=A

4

(person-days)
Look p-value5 Error spending

boundary6
Signal

CSSP
1 6 73 53 193 373 96 634 0.020 0.017 No
2 7 97 75 252 559 125 366 0.012 0.020 Yes
3 8 116 88 314 716 155 774
4 9 143 107 379 954 187 629
19 24 514 379 1 454 836 703 747

1Ycum is the total cumulative events observed at and before look t.
2Ycum,D=A is the total cumulative events observed at or before look t for those on drug A.
3Expcum is the total cumulative exposure time observed at and before look t.
4Expcum,D=A is the total cumulative exposure time observed at and before look t for those on drug A.
5Look p-value is the cumulative probability of observing Ycum,D=A or something more extreme at or before look t.
6Error spending boundary is the amount of cumulative alpha one specifies to spend at a given look. Given the error spending boundary, one computes the
current p-value at each look, and if that current p-value is less than the error spending boundary, then the given look has signaled.
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KEY POINTS

• Active postmarket surveillance of pre-defined out-
comes require sequential monitoring approaches
that control the overall type I error, or false-
positive rate, because of multiple testing over time.

• There are numerous sequential monitoring meth-
ods that can be applied, and these approaches differ
based on the test statistic of interest, how the
approach controls for confounding (stratification,
matching, or regression), and how the approach
derives the sequential monitoring boundary.

• There are numerous reasons that postmarket sur-
veillance is different from the randomized control
trial setting, in which most sequential monitoring
methods have been developed, but key differences
include the observational cohort design yielding a
need for confounding control, more frequent test-
ing because data are available more rapidly, and
the interest often is in rare adverse events.

• The four approaches presented in thismanuscript are
the current statistical approaches being applied to the
postmarket surveillance setting with appropriateness
of a given approach depending upon strength of
confounding control needed, frequency of testing
desired, and how rare the adverse of interest is.
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